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Abstract

The recent advent of parallel machines with tens of thousands of processors is pre-
senting new challenges for obtaining scalability. A particular challenge for large-scale
scientific software is determining the inter-processor communications required by the
computation when a global description of the data is unavailable or too costly to
store. We present a type of rendezvous algorithm that determines communication
partners in a scalable manner by assuming the global distribution of the data. We
demonstrate the scaling properties of the algorithm on up to 32,000 processors in
the context of determining communication patterns for a matrix-vector multiply
in the hypre software library. Our algorithm is very general and is applicable to a
variety of situations in parallel computing.
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1 Introduction

Scalability is a key issue for scientific computing due to the ever-increasing
demand to solve large applications on high performance massively parallel
computers. We view an application code as scalable if that code can use ad-
ditional computational resources effectively. In particular, if we increase the
problem size and the number of processors in such a way that the local prob-
lem size on a single processor stays fixed, the application code execution time
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should remain relatively constant. Many factors may affect the scalability of a
particular code, such as the machine architecture or various properties of the
algorithm (e.g., the convergence rate of a linear solver). Furthermore, scalable
implementation choices are particularly important when developing software
for scientific computing.

Many algorithms that are relatively scalable for several thousand processors
may not scale well on machines with ten times as many processors. In fact,
these new machines with tens of thousands of processors, such as BlueGene/L
at Lawrence Livermore National Laboratory, are forcing the re-examination
of some existing computations in scientific software for parallel computing. As
always, minimizing computation and communication costs is critical for good
performance. However, with many more processors, minimizing storage also
becomes an issue. Data structures that depend on the number of processors
(P ) may be problematic as P approaches 100,000, particularly if the machine
has a relatively small amount of memory per processor. (BlueGene/L has 256
MBytes per processor [2].)

We focus on a situation in parallel computing that is common to much sci-
entific software. In a parallel application code, problem data is distributed
across processors. When that application code utilizes a parallel software li-
brary, for example, the problem data is most efficiently passed to the library
in its distributed form. It is typically the case that for the library to perform
its function, some information regarding the global distribution of the data
will be needed. Certainly in the case of a linear solver library, each proces-
sor cannot continue to work independently. A solver algorithm requires that a
processor obtain “nearby” data from other processors in order to complete the
solve. While a processor may easily determine what data it needs from other
processors, it may not know which processor owns the data it needs. There-
fore, processors must determine their communication partners, or neighbors.
The problem of determining inter-processor communication (in the absence
of a global description of the data) in a scalable manner is the focus of this
paper.

We examine algorithms for determining neighbors in the context of the the
hypre software library [7,6]. The hypre software library provides high per-
formance preconditioners and solvers for the solution of large, sparse linear
systems on massively parallel computers. For ease of use, these solvers are
accessed from the application code via hypre’s conceptual interfaces, which
allow a variety of natural problem descriptions. For a code utilizing hypre to
be scalable, the interfaces as well as the solver algorithms must be be scalable.

Our specific goal for determining neighbor communications in a scalable man-
ner is an algorithm that depends on the number of processors logarithmically
or better in terms of computation, communication, and storage requirements.
Minimizing storage is particularly challenging as the most straightforward ap-
proach involves constructing a global partition of the data which requires O(P )
data storage.

In this paper, we present an algorithm for determining neighbor data on tens
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of thousands of processors in a scalable manner. Under reasonable assump-
tions, our new algorithm achieves scalability by assuming the global distri-
bution of the data. In particular, the new algorithm is a type of parallel
rendezvous algorithm that uses the concept of an assumed partition to an-
swer queries about the actual global distribution of the data. This algorithm
concept has wide applicability to other situations within hypre and to other
application codes as well. For example, many situations that require a call to
MPI Allgatherv can be easily restructured to use the assumed partition
concept instead, thereby reducing storage and improving scalability.

This paper is organized as follows. In Section 2, we discuss previous neighbor-
finding algorithms and related work as well as describe the conceptual inter-
faces in hypre. We introduce our assumed partition algorithm in general terms
in Section 3. We then present the details of the assumed partition algorithm
in the context of the hypre linear-algebraic and structured-grid interfaces in
Sections 4 and 5, respectively. Numerical results and cost analyses are also
given. In Section 6, we discuss a general algorithm we developed that facili-
tates implementation of the assumed partition idea by allowing data exchange
in a generic way. Finally, we close with some concluding remarks in Section 7.

2 Background

A unique feature of the hypre software library is the provision of multiple
conceptual views for describing the problem being solved. These conceptual
interfaces allow the user to access the library by describing the problem in the
manner that is most natural. To illustrate the need for determining commu-
nication neighbors in a scalable manner, we focus on two of the conceptual
interfaces in hypre: the linear-algebraic interface (IJ) and the structured-grid
interface (Struct). These two interfaces allow access to different solvers and
may produce different data layouts within hypre. The IJ interface is a standard
linear-algebraic interface for applications with sparse linear systems. With this
interface, the user describes a linear system in terms of a sparse matrix and a
vector, i.e. in terms of row and column indices. The Struct interface, on the
other hand, is appropriate for applications with logically rectangular grids.
This interface allows the user to describe a linear system in terms of grids and
stencils and access grid-based solvers such as geometric multigrid. With this
interface, the details of forming a linear system are invisible to the user. A
detailed discussion of the design and use of all of the conceptual interfaces in
hypre can be found in [3,4].

We are interested in the situation in which each processor is aware only of its
own portion of a global problem. For example, a processor may only know of
the rows it owns in a matrix or its particular piece of a global grid. In the case
of a linear solver library, for example, consider the need of a solver to perform
a matrix-vector multiply. To do so, each processor will need to determine two
things: which processors to receive data from and which processors to send
data to for the multiply operation. In effect, its communication neighbors
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must be determined by the library. While a library could require its users
to provide relevant communication pattern information, we consider this a
non-trivial and unrealistic burden on the user in most cases.

A straightforward approach for determining neighbors is for each processor
to construct a global partition of the data. This global partition can be con-
structed via a global collective communication. Once each processor knows
what data every other processor owns, determining which processors to re-
ceive data from is straightforward. At this point, a second global communica-
tion can convey the receive processor information. This second communication
of data allows processors to determine what data they need to send and to
whom. Such an approach requires O(log(P )) communication costs and O(P )
storage. Computation costs may easily be O(P ) as well, depending on the
implementation. While such costs are not problematic for a moderate number
of processors, they become problematic as P approaches 100,000.

In [5], the current algorithms for determining neighbor communication pat-
terns in hypre are discussed and analyzed in detail. These algorithms essen-
tially follow the straightforward approach just described, with a few optimiza-
tions. The algorithm cost dependence on P is O(log(P )) for communication
and O(P ) for storage and computation. Therefore, in this paper we follow
up on ideas for a scalable assumed partition algorithm suggested in [5]. In
particular, we implement and analyze the ideas in [5] for the linear-algebraic
interface, and, more significantly, we develop a method for determining a rea-
sonable assumed partition in the structured-grid interface. The structured-grid
interface presents particular difficulties because the assumed partition must
be two or three-dimensional, depending on the problem, and the grid may
contain “gaps”.

We mention that determining inter-processor communications patterns in the
case of distributed problem data has been addressed in [9] and [10]. There,
the primary concern is avoiding redistributing large amounts of data. In [9],
an algorithm that creates a distributed directory is suggested. The directory
is then populated via a hash function. This directory is used by a rendezvous
algorithm to determine neighbors. Our assumed partition idea is similar except
that we do not restrict ourselves to a hash function, but instead we assume the
distribution of the data. More importantly, our main focus in this work is to
avoid linear dependence on P in all aspects of the algorithm costs, particularly
storage costs, and this concern is not an emphasis in [9].

3 The assumed partition algorithm idea

As mentioned in Section 1, to calculate communication neighbors in a scalable
manner, the algorithm costs should at most depend on P logarithmically. In
this section, we give a general description of the assumed partition algorithm
idea. Then specific algorithm details are given in the context of two different
interfaces in hypre in the following two sections.
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The general assumed partition algorithm idea can be described in the following
three steps.

Algorithm 1: Assumed Partition
1.1. Assume the global distribution of data (define Fa)
1.2. Redistribute the actual partition description to the assumed par-

tition
1.3. Use the assumed partition to determine global information

The novelty of this method lies in step 1.1 where a global description of the
problem data is assumed by the algorithm. We refer to the global distribution
of the data as the actual partition and the distribution of the data assumed
by our algorithm as the assumed partition. The key is to define the assumed
partition of the data in a manner that requires minimal storage (or no storage)
and can be queried by a function call that costs O(1) operations. We refer to
this function as the assumed partition function, or Fa. For example, for the
case where problem data consists of a matrix and a vector, a typical query
would ask which processor owns a given row, or conversely, what range of rows
a particular processor owns.

In step 1.2 of the algorithm, data describing the actual partition is redis-
tributed to the assumed partition. This step in effect creates a distributed
directory as each processor learns who actually owns the data that it is as-
sumed to own. Note that in this algorithm the actual problem data does not
need to be redistributed: a description of who owns the data is sufficient and
requires less storage and data transfer.

In step 1.3, each processor uses the assumed partition to determine global
information. This requires a rendezvous algorithm, and the assumed parti-
tion defines the rendezvous locations. In the case of determining the required
communication patterns for a matrix-vector multiply, each processor uses the
assumed partition to learn who to send data to and receive data from. How-
ever, one can envision this algorithm more generally being of use when an
MPI Allgatherv is used, but each processor needs only its own particular
subset of the global data.

4 The linear-algebraic interface (IJ)

To access hypre’s linear solvers via the IJ interface, the user defines the ma-
trix and right-hand side in terms of row and column entries. As with all the
interfaces in hypre, the user provides the data in distributed form. Matrices
and vectors are distributed across P processors in contiguous blocks of rows.
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For example,

A =



A1

A2

...

AP

 , (1)

where each submatrix Ak is owned by Processor k, k = 1, . . . , P . We define
N as the global number of rows in coefficient matrix A. Clearly, storing a
global partition of the data requires an array of size O(P ). More detail on this
interface may be found in [5] or [3].

In this section, we first describe the three steps of the assumed partition algo-
rithm, Algorithm 1, in terms of the IJ interface. We then provide numerical
results which illustrate the benefit of using an assumed partition algorithm.

4.1 The IJ assumed partition algorithm

The assumed partition algorithm proceeds as follows. Recall that each proces-
sor only knows the range of rows that it owns and has no information regarding
the rows on other processors. Therefore, in step 1.1, we determine an assumed
partition of the matrix that is defined by function Fa and is available to all
processors.

For example, a function describing a balanced partition that for a given row
number, r, returns a processor id, p, is p = Fa(r; P, N) = b(r×P )/Nc, where
the global number of rows and processors are parameters. The inverse of that
function also needs to be available: for a given processor id p, return the
range of rows that Processor p owns. Note that the chosen assumed partition
function need not describe the actual partitioning of the data. (This point will
be particularly obvious in the context of the Struct interface.)

Step 1.2 requires that each processor reconcile its actual and assumed parti-
tion data. To be specific, Processor p uses Fa to determine which processors
are assumed to own the rows that it actually owns. Processor p must contact
each of these processors to let them know that it owns their assumed rows. In
this way each processor learns the actual owners of all the rows in its assumed
row range. Figure 1 illustrates how the assumed and actual partitions may
differ with four processors. In this example, horizontal bars represent rows 0
to N−1 for the two partitions which are divided into four ranges for four pro-
cessors numbered 0 to 3. The vertical dashed lines indicate where the actual
and assumed partitions of this data differ. The arrow indicates rows owned
by processor 0 that are in the assumed partition of processor 1. Therefore
processor 0 must contact processor 1 with the range of rows indicated by the
arrow. Similarly, processor 1 must contact processor 2, processor 2 must con-
tact processor 3, and processor 3 contacts no one. In this manner, a distributed
directory is created such that each processor stores the actual owners of the
rows it is assumed to own.
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Fig. 1. A graphical representation of an assumed and actual partition of N rows of
a matrix among four processors.

In step 1.3, the assumed partition is used to calculate inter-processor com-
munication information. For example, to perform a matrix-vector multiply
operation, the communication pattern is determined by the non-zero pattern
of the matrix. Each Processor p needs to determine two types of neighboring
processors: the receive processors and the send processors. The receive proces-
sors are those processors from which Processor p needs to receive vector data
that it does not own to perform the multiply. Conversely, the send processors
are those processors to which Processor p must send data. To calculate its
receive processors, Processor p uses the assumed partition to determine which
processors are assumed to own the data it needs. Processor p then contacts
those assumed processors and learns from them who actually owns the data
in question. Now Processor p knows all the processors that own the data it
needs. Next, Processor p directly contacts these processors, telling them what
data it needs. In this manner all processors learn their send processors.

Step 1.3 contains a complexity. Calculating the send and receive processors in
the manner described requires point-to-point communications in which pro-
cessors do not know how many times they will be contacted, by whom they
will be contacted, or with how much data. It was suggested in [5] that a
distributed termination detection algorithm (e.g., [8]) is appropriate for this
situation. Therefore, we use a termination detection procedure that is appro-
priate for a number of such situations with unknown contact information. We
discuss this algorithm in some detail in Section 6.

Because our goal is a scalable algorithm, we are interested in the algorithm
costs for storage, computation, and communications in terms of the depen-
dency on P , and we ignore other terms. In step 1.1 of the algorithm is a
function that does not require storage or dependence on P . In step 1.2, costs
depend on the number of neighbors that a processor has, which is independent
of P . No termination detection is needed for this step as processors can probe
for messages until they learn who owns each of their assumed rows. Any rea-
sonable assumed partition function will require modest amounts of storage for
each processor when the distributed directory is built (O(1) in most cases),
provided that the user’s actual distribution is reasonable. For example, if the
user assigns one row each to P − 1 processors and the remaining N − P − 1
rows to a single processor, this is not a reasonable distribution. (We are more
precise in defining a reasonable distribution in Section 5.) In step 1.3, deter-
mining the send and receive processors requires storage, communications, and
computations based on the number of neighbors. However, the termination
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detection algorithm requires a couple of sweeps of a binary tree of processors,
resulting in O(log(P )) costs.

4.2 Experimental results

Here we provide results from runs on BlueGene/L at Livermore National Lab-
oratory. We note that only a subset of the machine is available at this time.
When completed, BlueGene/L will have 65,536 nodes. Each node contains two
667 MHz processors and 512 MBytes of memory. (See [2] for more information
on the machine architecture.) We compare the new assumed partition algo-
rithm with the previous implementation that stored the global partition in
the context of determining communication patterns for a matrix-vector mul-
tiplication. The problem that is used for the results in Figure 2 is a matrix
derived from finite differences for a three-dimensional Laplace operator with
a 27-point stencil on a cube. Each processor has 64,000 rows. Test runs were
done using P = 43, 63, 83, 103,123, 143, 163,183,203, 223, 243, 253, 283, and 323

processors.

For small numbers of processors the previous implementation is acceptable.
However, the scaling properties of the new method are clearly superior. While
the calculation times are relatively small for this interface on this machine,
more significantly, the storage requirements are only O(1) with the new al-
gorithm. The timing obtained with 283 processors slightly deviates from the
linear trend for the old algorithm. We note that the BlueGene/L machine
appears to be somewhat sensitive to the number of processors requested and
their associated mapping to nodes. For example, numbers of processors that
are powers of two tend to be very efficient. We have observed such repeatable
anomalies in other codes as well when the executions times are as small as in
Figure 2 (and later in Figure 12 as well).

5 The structured-grid interface (Struct)

The Struct interface is appropriate for problems that may be described in
terms of a structured-grid and a fixed stencil pattern of non-zeros at each grid
point. Consider a global d-dimensional index space. Boxes are described in
terms of “lower” and “upper” corner indices as in Figure 3. Each processor
owns some number of boxes in the index space, and these boxes collectively
describe the grid (the non-empty space in the index space). The subset of the
index space that we are concerned with is the bounding box for all of the grid
boxes. Note that the grid boxes are non-overlapping. Therefore, instead of pro-
viding a matrix, the user provides the grid in distributed form such that each
processor knows only about the grid boxes that it owns. Each processor owns
at least one box, and the box indices indicate how data is related spatially.
More detail on this interface may be found in [5] or [3].

For this interface, neighbor information needed by the structured-solver algo-
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The test matrix is the 3D Laplacian operator with a 27-point stencil.
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Fig. 4. Processor 2’s send boxes are
values owned by Processor 2 needed
by other processors and its receive
boxes values owned by other proces-
sors needed by Processor 2.

rithms depends on the spatial location of the grid boxes. Generally, processors
need to be aware of boxes owned by other processors that are spatially close
to their own boxes. Determining neighbors by constructing the actual parti-
tion is quite costly for this interface. To collect information about the global
grid, each processor must send the extents of its boxes to all other processors.
This can be done with a collective MPI Allgatherv with O(log(P )) opera-
tions. Unfortunately, the storage required is O(B), where B denotes the total
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Fig. 5. An example of a
two-dimensional structured-grid
with no gaps in the bounding box.

Fig. 6. An example of a
two-dimensional structured-grid
with gaps in the bounding box.

number of boxes in the grid and B ≥ P . This can be an excessive amount of
storage if P is large and each processor has even a modest number of boxes.
In addition, in the case of a multigrid solver, each grid may require a par-
tition. Next, neighbor data that needs to be sent and received to perform a
matrix-vector product, for example, is determined based on spatial locality. In
Figure 3, assume that each box is owned by a processor of the same number.
Processor 2 needs to learn about boxes 1 and 3. If the given stencil requires the
knowledge of boxes that are d grid points away, Processor 2 enlarges its box
by d grid points in each direction and determines neighbors via a box-by-box
comparison with the actual partition. This step involves O(B) operations. In
the case of a matrix with a 5-point stencil, for example, the data to be sent and
received by Processor 2 is shown in Figure 4. It would be possible to reduce
the O(B) operations required for the box-by-box comparison by storing the
actual partition in a data structure that indicates spatial position (such as an
octree, for example). However, these types of data structures also have O(B)
storage requirements.

For this interface, a scalable algorithm for determining neighbors is partic-
ularly important. Recall that the IJ interface requires partitioning a one-
dimensional index space where each index represents a row. In contrast, the
Struct interface requires partitioning a two or three-dimensional bounding
box that may or may not have gaps (i.e., areas with no grid boxes), as shown
in Figures 5 and 6. Therefore, a more sophisticated assumed partition function
is required to achieve good performance.

Next, we discuss an implementation of the assumed partition idea for the
Struct interface. Because this algorithm is more complex than for the IJ in-
terface, we provide more detail. We then analyze the cost requirements and
present numerical experiments to demonstrate the benefit of the new algo-
rithm.
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5.1 The Struct assumed partition algorithm

We describe an assumed partition algorithm for the Struct interface in the
context of the three steps given in Algorithm 1. We focus on the example grid
in Figure 5. Then in Section 5.2, we discuss modifications required for large
gaps in the grid as in Figure 6.

5.1.1 Step 1.1 of Algorithm 1 (constructing the assumed partition)

Consider the example two-dimensional grid shown in Figure 5 for sixteen pro-
cessors. In this example, the bounding box is completely filled with grid boxes.
We determine an assumed partition of the data by assigning each processor
a subset of the bounding box such that each processor’s individual assumed
partition area is roughly equal. For example, in Figure 7, the dashed lines
divide the bounding box equally into sixteen areas.

Recall that this division of the bounding box must be done virtually via an
O(1) function, Fa, that answers queries about which processor owns which
piece of the bounding box. To construct such a function, the following steps
are performed:

Algorithm 2: Step 1.1 of Algorithm 1
2.1. Determine the extents of the bounding box.
2.2. Determine the number of assumed divisions in each dimension.

As each processor is only aware of its own grid boxes, the extents of the bound-
ing box are obtained in step 2.1 via a collective call to MPI Allreduce in
which each processor contributes its minimum and maximum extents. Step 2.2
requires determining the number of necessary divisions in each dimension. For
the example in Figure 7, three divisions are needed in each of the x and y
directions to obtain sixteen areas of equal size. In practice, the length of the
bounding box in the x and y directions may not be equal. Therefore, the num-
ber of divisions assigned to each direction is determined such that the assumed
areas are as close to square as possible. For example, if the bounding box is
twice as wide in the x direction as in the y, then we assign twice as many
divisions to the x direction. In addition, the number of processors may not be
a perfect square or may not factor into appropriate choices for the number of
divisions. Therefore, we allow the number of areas in the assumed partition to
exceed the number of processors, with the restriction of at most two areas per
processor. Typically a very small number of processors will own two areas and
the remainder own one area. For example, suppose we had fifteen processors
for the grid in Figure 5. We could also subdivide the bounding box as shown
in Figure 7 and assign one of the processors to two areas.

The bounding box extents and the number of divisions in each direction are
stored by all processors. This storage is all that is required by the assumed
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Fig. 7. The assumed partition for six-
teen processors.

Fig. 8. Using the assumed partition to
determine neighbor boxes.

partition. An O(1) function is then easily constructed to answer queries about
which processor owns which piece of the bounding box. For example, for the
grid in Figure 7, given a processor id p, Fa returns the corresponding di-
mensions of the area assigned to Processor p in the assumed partition. Our
implementation implicitly assigns processors to areas from left to right and
from bottom to top starting with processor 0. Therefore, for processor id p = 0,
the dimensions of the lower left area are returned by the function. Conversely,
given any grid box extents, Fa returns the corresponding owner(s) of that box
in the assumed partition. For example, given the extents of the black grid box,
Fa returns the processor id p = 13.

5.1.2 Step 1.2 of Algorithm 1 (redistributing data to the assumed processors)

In step 1.2 of Algorithm 1, the assumed and actual partitions are reconciled
as in the IJ case. Consider the black grid box in Figure 7. The processor
that actually owns this black box must contact the corresponding owner in
the assumed partition. In this manner, each processor learns of all the boxes
that intersect its area in the assumed partition and builds its subset of the
distributed directory. Our algorithm for this step consists of three parts:

Algorithm 3: Step 1.2 of Algorithm 1
3.1. For each local box, use Fa to determine the corresponding proces-

sor id in the assumed partition.
3.2. Send local box descriptions to the appropriate processors.
3.3. Receive box descriptions from other processors that intersect my

area in the assumed partition. Store these box descriptions.

Step 3.1 of the algorithm above requires calling the assumed partition function
for each local box. Because a grid box may intersect more than one area in
the assumed partition, the assumed partition function may return more than
one processor id. Regarding step 3.2, we clarify that only the grid box extents
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are included in the distributed directory, and corresponding stencil data is
not transferred. Additionally, this algorithm requires an unknown number of
contacts from unidentified processors, and, therefore, a termination detection
routine is required.

5.1.3 Step 1.3 of Algorithm 1 (determining neighbors with the assumed par-
tition)

In step 1.3 of Algorithm 1, processors use the assumed partition to determine
data that needs to be sent to and received from other processors. The assumed
partition facilitates finding neighbors by supplying processors with information
on potential neighbors. To be specific, consider again the same example in
Figure 7. Processor k owns the black box and virtually enlarges it by the
distance for which it wants neighbor information as shown in Figure 8. Then
Processor k uses the assumed partition function to learn which processors’
assumed partition areas intersect the enlarged black box. In this example, two
areas in the assumed partition are intersected. Processor k then contacts the
corresponding two processors and requests the list of grid boxes in their area
of the assumed partition. Now Processor k has a list of potential neighbor
boxes and can determine actual neighbors for the black box via box-by-box
comparison.

Below we summarize this algorithm for finding neighbors:

Algorithm 4: Step 1.3 of Algorithm 1
4.1. Determine which processors’ areas in the assumed partition could

contain neighbors for my local boxes.
4.2. Contact these processors and receive the list of boxes in their areas

of the assumed partition (the potential neighbor boxes).
4.3. Compare my local boxes to the potential neighbors boxes to de-

termine actual neighbor boxes.

This algorithm also requires a termination detection routine as the number of
contacts in unknown. In addition, note that this algorithm does not require or
assume a resemblance between the actual partition and the assumed partition.
Although the two distributions are likely to be similar in the IJ interface, no
such resemblance is likely for the Struct interface. The distribution of data
is further analyzed when we discuss algorithm costs in Section 5.3.

5.2 Gaps in the bounding box

Consider the example in Figure 6 where large portions of the bounding box do
not contain grid boxes. When we construct an assumed partition for this ex-
ample in the manner described in the previous section, the resulting partition
is shown in Figure 9. For this example, only half of the processors have grid
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Fig. 9. The assumed partition regions for sixteen processors.

Fig. 10. Two assumed partition cover-
ing regions.

Fig. 11. The assumed partition regions
for sixteen processors.

boxes in their area of the assumed partition. If the assumed partition does
not properly represent where the grid boxes are located, then load balancing
problems may occur when the distributed directory is built in step 1.2. For
this reason, a more sophisticated assumed partition function is required when
large gaps exist in the bounding box.

In the presence of gaps, we still assign processors to areas in the assumed
partition as described in Section 5.1.1. However, instead of the assumed par-
tition consisting of the entire bounding box whose area is denoted by Vb (in
this discussion, the term “area” could be replaced by “volume” in the case
of a three-dimensional grid), and dividing that area into O(P ) regions as in
Figure 9, we first determine an assumed partition that more closely fits the
grid boxes. In particular, we construct an assumed partition with total area
Vc that consists of some small number of covering regions that contain the
grid boxes. Let Vg denote the total area of all of the grid boxes. We construct

the assumed partition such that Vg

Vc
≥ γ, where γ is independent of P , and

Vg ≤ Vc ≤ Vb. This reduces the gaps in the assumed partition area, thereby
improving load balancing. For example, Figure 10 shows an assumed partition
that consists of two covering regions that more closely fit the grid data. We
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first describe an algorithm to determine the covering regions and then explain
how each processor is assigned to a covering region and ownership is assumed
in that region via an O(1) function.

Consider the following algorithm for determining the covering regions. We
equate the covering regions to leaves in a quadtree (for problem dimension d =
2) or octree (for d = 3) data structure. A quadtree/octree is a tree-based data
structure that relays spatial information. For example, to create a quadtree
graph, a two-dimensional box is recursively divided into four quadrants. Each
level of recursion corresponds to a level in the tree, and we denote the levels of
the tree by m. Therefore, the number of leaves on each level m is nl = (2d)m.
We begin with level m = 0 which corresponds to one leaf representing the
entire bounding box and continue until Vg

Vc
> γ is satisfied.

Algorithm 5: Determining covering regions (Step 2.1 of Algorithm 2)
For m = 1, 2, . . .
5.1. Determine the area (volume) of my local grid boxes in each leaf

region.
5.2. Participate in an MPI Allreduce to determine the global area

(volume) of grid boxes in each leaf region.
5.3. Divide any leaf regions that do not contain at least γ fraction of

grid boxes into 2d new leaf regions. If all leaves are sufficiently full,
then stop iterating.

5.4. Determine the maximum and minimum extents of my local grid
boxes in each leaf region.

5.5. Participate in an MPI Allreduce to determine the global maxi-
mum and minimum grid box extents and the number of grid boxes
in each leaf region.

5.6. Eliminate all leaf regions that do not contain any grid boxes.
5.7. Shrink the remaining leaf regions according to the maximum and

minimum grid box extents (now the leaves are bounding boxes).

When the above algorithm is applied to the grid in Figure 5, an assumed
partition consisting of the entire bounding box is determined by the third
step of the first iteration regardless of the value of γ. For the grid in Figure 6,
we chose γ = 0.6. During the first iteration, the bounding box is split into
four quadrants. Two of these quadrants contain no grid boxes (the upper
left and lower right) and are eliminated. The extents of the remaining two
quadrants are modified according to the bounding boxes. The two covering
regions remaining at the end of the first iteration are shown in Figure 10. No
further subdividing is needed in the second iteration as each region satisfies
Vg

Vc
> γ. Note that we do not need to store an actual quadtree data structure

as storing only the non-empty leaves is sufficient.

After determining the covering regions that define the assumed partition, the
total area is divided in an assumed manner among all the processors. Let nc

denote the number of covering regions. Each processor knows the dimensions
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of the covering regions as well as the number of grid boxes in each. Proces-
sors are assigned to the covering regions in proportion to the fraction of the
total number of grid boxes contained by each region. In other words, regions
containing many grid boxes are assigned more processors than regions con-
taining few grid boxes. Assignment is done in this manner to load balance
the number of boxes in each processor’s area in the assumed partition, and
therefore the number of times a processor is contacted in step 1.2 (described
in Section 5.1.2). Note that in general there are many fewer covering regions
than processors (nc � P ), and each processor is assigned ownership in only
one covering region. Within each covering region, each processor’s area of the
assumed partition is roughly equal and determined by an O(1) function in the
exact manner described in Section 5.1.1. Therefore, the data required for the
global assumed partition for each of the nc covering regions are the covering
region’s extents, the range of processor ids assigned to that region, and the
number of divisions in the x, y, and z dimensions.

Figure 11 demonstrates the divisions in the assumed partition for sixteen
processors. In our implementation, processors 0-7 are assigned to the covering
region in the lower left corner and processors 8-15 are assigned to the region
in the top right. Note that each of the regions is divided into nine areas, even
though only eight processors are assigned to each covering region. As a result
processor 0 owns two areas in the left region and processor 8 owns two areas
in the right region. As mentioned in Section 5.1.1, the assignment of areas is
determined according to the number of divisions and number of processors.

5.3 Costs

As we have seen, the implementation of Algorithm 1 for the Struct interface
(Algorithms 2, 3, and 4) is more complicated than for the IJ interface. Sim-
ilarly, the costs for the algorithm are considerably more difficult to analyze.
To do this, we first need to characterize the grid and its distribution in a way
that is both easy to understand yet helpful in the analysis. First, we make
some simplifying assumptions.

Assumptions: Assume that the d-dimensional grid bounding box has

sides of equal length, V
1/d
b . Assume that the covering regions are perfectly

load balanced so that each process owns exactly the same volume, Vc/P ,
of the assumed partition. Finally, we assume without loss of generality
that

γ ≥ Vg

Vb

, (2)

since Algorithm 5 will determine the same covering regions for all values
of γ smaller than this.

There are two main aspects of the grid that are important to characterize: its
overall “shape” and its underlying decomposition.
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Grid shape (cover mesh): Consider a uniform mesh over the bounding
box with mesh spacing

h =
V

1/d
b

2L
, (3)

where L ≥ 1 is an integer specified below. Define the cover mesh to be
the set of all mesh cells that intersect the grid, and define Vh to be the
volume of the cover mesh. As an example, the cover mesh in Figure 9
for L = 2 consists of the two 2 × 2 blocks of cells in the lower-left and
upper-right corners. It is clear that Vh → Vg as h → 1 (as L increases, 2L

approaches the number of mesh cells). In this section, we define L such
that the mesh spacing h is maximized and the following is satisfied:

Vg

Vh

≥ γ. (4)

In other words, we define the cover mesh to be the coarsest uniformly-
spaced mesh that covers the grid with accuracy prescribed by γ. This
cover mesh provides a characterization of the overall shape of the grid
that is both simple to understand and easy to relate to the actual cover
regions in the algorithm. We will comment more on this particular char-
acterization at the end of this section.

Grid decomposition: Define wmin to be the minimum box width over the
boxes in the grid. Also, define vmax to be the maximum volume over the
local grids stored on each processor. In a well load-balanced setting, all
boxes are equal-sized cubes with sides of length wmin, and each process
“owns” the same amount of the grid given by vmax.

We now introduce a few additional quantities that are useful in the analysis.
Note that we can relate all of these quantities back to the above grid char-
acterization. We let nc denote the number of covering regions and nh denote
the number of cells in the cover mesh. Recall that both the cover mesh and
the cover regions are constructed by recursively subdividing the grid bound-
ing box by two in each dimension. However, because we only subdivide leaves
when necessary during the construction of the covering regions (line 5.3), and
because we also shrink the leaves (line 5.7), we have that nc ≤ nh and Vc ≤ Vh.
From (3), (4), and (2) we have

nc ≤ nh =
Vh

hd
= 2Ld

(
Vh

Vb

)
≤
(

2Ld

γ

)(
Vg

Vb

)
≤ 2Ld. (5)

We let bmax denote the upper bound for the maximum number of boxes on a
processor given by

bmax :=
vmax

wd
min

. (6)

In what follows, we will analyze the costs for Algorithm 1 for the Struct
interface. The costs will be written in terms of the quantities nc, bmax, and L,
which are either directly related to the grid characterization or can be related
through (5) and (6). The quantities γ, P and d will also appear in the analysis.
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Cost for Algorithm 2 (and Algorithm 5)

Algorithm 2 for constructing the assumed partition consists of two lines.
Line 2.1 requires either determining the extents of the bounding box (via
MPI Allreduce) which costs O(log(P )) communications, or determining
covering regions via Algorithm 5. Recall that the covering regions result from
recursively subdividing the bounding box and retaining non-empty regions un-
til Vg

Vc
≥ γ is satisfied. The lines in the algorithm that call MPI Allreduce

(lines 5.2 and 5.5) each require O(log(P )) communications with at most O(nc)
data. The remaining lines all require gathering statistics on local boxes for
each covering region at a cost bounded by O(ncbmax) computations. The total
number of iterations is given by the depth of the tree, which is bounded by
L. Hence, the total computational cost of Algorithm 5 is at most O(L log(P ))
communications with a total of O(Lnc) data and O(Lncbmax) floating-point
operations. Storage costs are at most O(nc). Line 2.2 assigns ownership of
processors to covering regions and determines the number of divisions in each
dimension for each covering region. The computational cost for this line is
O(nc).

Cost for Algorithm 3

Here we examine the cost to distribute the grid boxes to the correct assumed
partition processors via Algorithm 3. Each call of the assumed partition func-
tion requires O(nc) computations. Therefore, O(ncbmax) computations are re-
quired for line 3.1. In line 3.2, the number of processors that are contacted
is at most bmax and is fewer if the local grid boxes are spatially clustered. To
analyze line 3.3, temporarily denote the volume of each processor’s assumed
partition by vc. From the assumptions and (4),

vc =
Vc

P
≤ Vh

P
≤ Vg

γP
≤ vmax

γ
.

From this and the fact that wmin ≤ v1/d
c , we see that the number of boxes that

intersect a processor’s assumed partition is bounded by

(
v1/d

c

wmin

+ 1

)d

≤
(

2
v1/d

c

wmin

)d

≤
(

2d

γ

)(
vmax

wd
min

)
=

(
2d

γ

)
bmax. (7)

Hence, the number of receives and storage in line 3.3 is at most O((2d/γ)bmax).
In addition, as previously mentioned, a termination detection mechanism is
also required for lines 3.2 and 3.3, and this mechanism adds an additional
O(log(P )) cost for communication.

Cost for Algorithm 4

We now examine the cost of calculating neighbors in Algorithm 4 using the dis-
tributed directory. We denote the maximum number of neighbors a processor
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may have by q (and assume that q is independent of P ). Line 4.1 involves calls
to the assumed partition function for each local box, which costs O(ncbmax)
computations. Line 4.2 costs O(q)+O(log(P )) communications because a ter-
mination detection routine is required. Storage requirements depend on q and
the amount of data in the distributed directory. In the worst case, if a proces-
sor’s local boxes are not spatially clustered, the number of potential neighbor
boxes is O(q bmax). Then the comparison in line 4.3 requires O(q b2

max) com-
putations.

Overall Costs

If we assume that the quantities nc, bmax, and L are all independent of P , then
the above analysis shows that Algorithm 1 for the Struct interface has com-
munications and computations costs that depend only logarithmically on P .
Furthermore, storage costs have no dependence on the number or processors.
In Section 5.4, we give experimental results that support these estimates.

We note that the assumption of perfect load balancing for the covering re-
gions is reasonable because the construction of the covering regions is wholly
determined by the assumed partition algorithm. For the particular algorithm
described in the previous section, a processor may have a covering region that
is at most twice the size of that of another processor. This factor of two enters
the cost analysis in (7) and does not affect the overall cost estimate.

It is clear that the grid characterization plays a crucial role in the above
analysis. In particular, it is important that L is not too big and that the grid
is well load-balanced. We can somewhat control the size of L by choosing a γ
that is not too close to one. However, from the analysis (e.g., see (7)), we also
see that we should not choose γ too close to zero.

Because the grid characterization uses fixed-size mesh cells in its cover mesh,
it does not take into account the shrinking feature in line 5.7 of Algorithm 5.
As a result, the constants in the analysis can be much larger than they are
in practice. For example, consider the 2d grid composed of two small boxes,
one in the lower-left corner of the grid bounding box and the other in the
upper-right. Here, L can be made arbitrarily large by increasing the distance
between the two grid boxes. However, for all of these grids, Algorithm 5 would
find at most two cover regions with a tree depth of at most two. To improve
the analysis, we might try to define a different grid shape characterization
(remembering that it should be both simple to understand and easy to relate
to the cover region), but this does not seem to be a straightforward task.

Even though the above analysis is sometimes a crude upper bound on the
performance of Algorithm 5 (it can also be sharp), it helps to illustrate possible
algorithmic improvements that might be made. Note that the only way to
reduce Vc is for leaves to either shrink as a result of line 5.7 or be eliminated
altogether in line 5.6. The only way to eliminate leaves is for the midpoint of
its parent leaf to land outside of the grid. If the midpoint of the parent leaf
lands inside of the grid, then all of its 2d children will have non-empty grid
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intersections (note that it might still be possible to shrink some of these child
leaves). Because of this, it is easy to construct grids for which Algorithm 5
will perform poorly.

For example, consider the 1d grid constructed by taking B equal-sized grid
boxes laid out next to each other, then removing the second one from the left.
This results in a grid bounding box that is full except for a small gap near
the left side. If γ is large enough, Algorithm 5 will produce nc = O(log(B))
cover regions with a tree of depth nc. The optimal choice for this example
would be two cover regions. Modifying the algorithm to do a better job with
this particular example is possible, but modifying it to handle any grid in a
manner that is independent of B or P is not possible.

There are some algorithmic modifications that would improve the likelihood
of better performance. For example, we could change the midpoints used in
Algorithm 5 to divide leaves into children. To do this, in line 5.1, each proces-
sor could also determine a “closest midpoint” for each leaf region intersected
by its local grid boxes. These midpoints must land outside of the local grid
boxes. In line 5.1, this information would be compared to closest midpoint
data from other processors in the MPI Allreduce to determine global clos-
est midpoints to use for dividing the leaves. Depending on the distribution of
boxes in the 1d example above, this may reduce the depth of the tree, even to
the optimal depth of two.

As illustrated in the simple example above, the performance of Algorithm 5
depends heavily on the grid layout, and for some (obscure) grids, its perfor-
mance can even depend linearly on P . For most grids, this will not be the case
(see the experiments in Section 5.4), but we mention one case that may occur
in practice. The grids supported by the Struct interface often represent grid
levels in structured adaptive mesh refinement codes. In the case of a boundary
layer problem or a problem with shocks, the fine grid levels that capture these
features are long and thin, and get thinner as the mesh spacing is refined.
Capturing these features with fixed accuracy γ may require more and more
cover regions as the mesh is refined. Since P is related to the mesh spacing
(larger problems require more processors), the performance of the algorithm
could also depend on P , in the worst case, linearly.

5.4 Experimental results

We compare the new assumed partition method with the the old method that
stores the actual partition, as described at the start of Section 5. In particu-
lar, we report the time to determine the neighbor boxes and communications
required for a matrix-vector multiply in the Struct interface for each method.
Again we provide results from runs on BlueGene/L for P = 43, 63, 83, 103,123,
143, 163,183,203, 223, 243, 253, 283, and 323 processors. We contrast the per-
formance of the two methods on four different problems whose grids vary in
degree of difficulty for the assumed partition method.
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Fig. 12. A comparison of the new and old implementations for determining the
neighbor communications for the structured-grid interface. Here each processor owns
one large grid box and the bounding box has no empty space.
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Fig. 13. A comparison of the new and old implementations for determining the
neighbor communications for the structured-grid interface. Here each processor owns
64 grid boxes and the bounding box has no empty space.

21



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Processors

Ti
m

e 
(s

ec
.)

23 boxes/processor, with gaps and spatial locality for processor boxes

new
old

Fig. 14. A comparison of the new and old implementations for determining the
neighbor communications for the structured-grid interface. Here each processor owns
23 grid boxes and the bounding box is not completely full of grid boxes.
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Fig. 15. A comparison of the new and old implementations for determining the
neighbor communications for the structured-grid interface. Here each processor owns
23 grid boxes and the bounding box is not completely full of grid boxes. In addition,
grid boxes belonging to a single processor are not adjacent.
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For the grid in the first problem, each processor owns one grid box and the
entire bounding box is covered with grid boxes such that there are no gaps in
the bounding box. Results for this problem are given in Figure 12. Because
of the absence of gaps and the small number of grid boxes per processor, this
problem is the easiest of the four problems for both implementations. The new
assumed partition algorithm scales very nicely for this problem.

The second problem in Figure 13 is more challenging in terms of computation
and storage as each processor own 64 boxes. Again, this problem has no empty
space in the bounding box. Note that the times for both methods on this
problem are slower due to the larger number of boxes per processor. In this
case, the storage savings for the assumed partition method is also particularly
important.

The grids for the two problems in Figures 14 and 15 both have a lot of empty
space in the bounding box and 23 grid boxes per processor. As mentioned
previously, problems such as these with gaps are challenging in terms of load-
balancing. For the problem in Figure 14, the gaps are spread throughout the
domain, but grid boxes belonging to a single processor are spatially close to
each other. However, for the problem Figure 15, the grid boxes belonging to
each processor are not spatially local. In fact, in this example, the grid boxes
are arranged in 23 blocks across the diagonal of the bounding box (a cube),
and each processor owns one grid box in each of the 23 diagonal blocks. This
problem is very challenging for the assumed partition algorithm, as evident in
the results in Figure 15. For this problem, the crossover point at which the
assumed partition method is faster than the old method occurs at a higher
number of processors than with the previous three example problems.

The results for all four example problems indicate that the new assumed par-
tition method has better scaling properties than the old method for even “dif-
ficult” grids. In fact, we expect the benefit of the assumed partition method to
be even greater for larger numbers of processors. Furthermore, the savings in
storage is significant, particularly because multigrid solvers require multiple
grids for a single problem.

6 Exchanging data between processors

When implementing the assumed partition algorithm for both the Struct
and IJ interface, it is necessary for processors to exchange data with each
other in a way that the communication patterns are not known. In other
words, processors know which processors they need to contact and what type
of information they want to receive from those processors, but do not know
how much data they will actually receive. In addition, processors do not know
whether they will be contacted by any other processors requesting information
or how much information will be requested of them. The need for this type of
communication may arise frequently in parallel algorithms. As described in [5]
in the context of possible improvements to the IJ interface algorithms, the use
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of MPI IProbe is typically required when processors do not know who they
are communicating with. A termination detection routine is then required to
determine when to stop probing for messages.

We created a function that allows for such undetermined communication pat-
terns. We refer to the function as ExchangeData(). This function allows a
processor (i) to “contact” a list of processors with a message containing a
variable amount of data. The processors in the list do not know that they will
be contacted by Processor i. These processors must then send a “response”
message back to Processor i, and the response message can also contain any
amount or type of data. Essentially, the user gives ExchangeData() a list
of processors and corresponding lists of data (of any type) to send to each
processor. The function returns a list of data (the “responses”) from each of
the contacted processors. The user must also supply a function that dictates
how to create an appropriate response message based on the contact message
(called the FillResponse() function).

For example, consider Algorithm 4 for a particular Processor p. In line 4.1, Pro-
cessor p determines which processors may know about its neighbors, and cre-
ates a list of these processors to contact. Then in line 4.2, the ExchangeData()
function is called. Processor p contacts the processors determined in line 4.1,
and among them is Processor k. The contact messages do not need to con-
tain any data in this example. When Processor k is contacted by Processor p,
it must send back a response message to Processor p. The FillResponse()
function is responsible for taking the contact message from Processor p and
creating the appropriate response message. In this case, the response message
contains all of the boxes in Processor k’s assumed partition. Observe that
Processor k does not know that it will be contacted by p, and Processor p
does not know how much data it will receive from Processor k. In addition
Processors p and k may each be contacted by any number of other processors
requesting information.

Because of the general applicability of such an algorithm, we provide pseudo-
code for the ExchangeData() function in Figure 16. The algorithm begins by
each processor determining its location in a virtual spanning tree of proces-
sors. A processor then posts non-blocking sends to each processor it needs
to contact and post non-blocking receives for the responses it expects to get.
The processor may not know the size of the response, so a response size limit
is chosen and memory is allocated for responses of that size. This size limit
does not need to be an absolute maximum. If a response needs to be sent
that exceeds the limit, the message is broken into two messages. The second
message can be completed after termination has been detected since the size
of the data in the second message will be known at that time (it is prepended
to the first response message).

Essentially a processor continually probes for contact messages until it is told
by its parent processor to terminate. When a processor receives a contact
message, it calls FillResponse() to create an appropriate response for that
contact message. It then sends the response in one or two messages depending
on the size of the response. If no contact messages are found when probing,
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1. determine parent and children processors
2. send non-blocking contact messages
3. post non-blocking receives for the response messages
4. while (not time to terminate){
5. check for contact messages
6. while (contact message is waiting) {
7. receive contact message
8. call user-defined FillResponse()
9. send response buffer back to the contacting processor (prepend the size)
10. if (size of response buffer exceeds predefined limit){
11. send a second message with the remainder of the response data
12. }
13. check for contact messages
14. }
15. if (all response messages have been received) {
16. responses received = TRUE
17. }
18. if (termination messages have been received from all children) {
19. children terminate = TRUE
20. }
21. if (responses received AND children terminate){
22. send a termination message to parent
23. }
24. if (received a termination message from parent) {
25. send termination messages to children (blocking)
26. break;
27. }
28. }
29. Receive the remainder of any messages that exceeded the response size limit

Fig. 16. Pseudo-code for ExchangeData() function

the processor checks to see if it has received responses to all of its contacts. If
so, and if the processor has no children in the tree (i.e., it is a leaf processor),
it sends an upward termination message to its parent in the tree. A non-leaf
processor must wait for termination messages from all of its children before
sending a termination message to its parent. When the root node receives
termination messages from all of its children (and has itself received all of its
response messages), it then starts a downward termination sweep by sending
notice to terminate to its children. When a processor receives a downward ter-
mination message, it stops probing for contact messages and sends termination
messages to its children. After a processor ceases probing for messages, it re-
ceives any second response messages that occurred due to data that exceeded
the predefined response size limit.

Note that because we require processors to send response messages back to
each processor that contact it, the termination procedure used in this context
is simpler than is necessary to detect the termination of a general distributed
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computation. Without this requirement, we would need at least four traversals
of the spanning tree instead of the two required for this algorithm (for example,
see [1]). The cost of this algorithm in terms of P is O(log(P )) for the two
sweeps of the virtual spanning tree.

7 Concluding remarks

We explored determining inter-processor communications required by a com-
putation in a manner that does not require storing a global partition of the
data. Our experiments indicate that our assumed partition strategy is effective
in the context of the hypre software package on a large number of processors.
We are optimistic that our algorithm will scale up to 100,000 processors. This
assumed partition idea has general applicability to many situations in parallel
computing that utilize MPI Allgatherv.

In addition, we expect that some of the challenges of determining the as-
sumed partition function for the structured-grid interface and determining an
algorithm to accommodate unknown communication patterns are common to
other applications on large numbers of processors as well.
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